next_inactive up previous contents
  目次

Chronological Table of Fiber Fuse Research

Works of numerical calculations are listed in another table separately.

1987-2005

in Russia in Japan in Japanese
Kashyap and Blow (1987)
Kashyap (1988)
Kashyap and Blow (1988)
Hand et al. (1988)
Hand and St. J. Russell (1988b)
Hand and St. J. Russell (1988a)
Hand and Birks (1989)
Driscoll et al. (1991)
Dianov et al. (1992)
Davis et al. (1996)
Kashyap et al. (1997)
Davis et al. (1997)
Percival et al. (2000)
Wyatt et al. (2001)
Dianov et al. (2002b)
Kashyap (2003) Dianov et al. (2002a) Yanagi et al. (2002)
Atkins et al. (2003) Dianov et al. (2003) Seo et al. (2003b)
Nishimura et al. (2003)
Seo et al. (2003a)
Yanagi et al. (2003)
Dianov et al. (2004c) Shuto et al. (2004c)
Dianov et al. (2004d)
Dianov et al. (2004a)
Dianov et al. (2004b) Todoroki (2004) (藤田、森下 (2004))
Bufetov and Dianov (2005) (柳 et al. (2004))
Bufetov et al. (2005c)
Bufetov et al. (2005a)
Frolov et al. (2005b) Todoroki (2006b)
Bufetov et al. (2005b) Todoroki (2006a)
Frolov et al. (2005a)
Dianov et al. (2005b) Todoroki (2005a)
Dianov et al. (2005a) Todoroki (2005b)
Bufetov et al. (2005d) Todoroki (2005d) (轟 (2005))
Todoroki (2005c) (轟、井上 (2005))

2006-

in Russia in Japan in Japanese
(轟 (2006c))
Dianov et al. (2006b) (轟 (2006b))
Dianov et al. (2006a) (轟 (2006a))
Lee et al. (2006) (轟 (2006d))
(轟 (2006e))
Bufetov et al. (2007a)
Bufetov et al. (2007b)
Bufetov et al. (2008) Takenaga et al. (2008)
Wang et al. (2008) Todoroki (2008) (轟 (2008))
(黒河 et al. (2009))
Abedin and Morioka (2009) (竹永 et al. (2009a))
Abedin et al. (2009b) (半澤 et al. (2009))
Abedin (2009b)
Takara et al. (2009) (谷川 et al. (2009))
Hanzawa et al. (2009) Abedin (2009a)
Abedin et al. (2009a) (竹永 et al. (2009b))
André et al. (2010) Hanzawa et al. (2010b) (竹永 et al. (2010))
Rocha et al. (2010a) Hanzawa et al. (2010c)
Todoroki (2010)
Hanzawa et al. (2010d)
Hanzawa et al. (2010a) (轟 (2010))
(辻川 et al. (2010))
(半澤 et al. (2010))
Abedin and Nakazawa (2010) (坂本 et al. (2010))
Kurokawa and Hanzawa (2011)
Rocha et al. (2011a) Yamada et al. (2011a)
Ha et al. (2011)
Rocha et al. (2011b) Kurokawa et al. (2011)
Rocha et al. (2011d)
Rocha et al. (2011c) Yamada et al. (2011b)
André et al. (2011b)
André et al. (2011a) Todoroki (2011)
Todoroki (2012a)
Domingues et al. (2012c) Todoroki (2012b) (黒河 et al. (2012))
Kashyap (2012b) Yamada et al. (2012b) (轟 (2012))
Domingues et al. (2012b)
Rocha et al. (2012) Yamada et al. (2012a) Sekiya et al. (2012)
Kashyap (2012a)
Domingues et al. (2012a) Kurokawa (2012) (山田 et al. (2012))
(轟 (2013a))
Kashyap (2013a) (黒河 (2013))
Dvoretskiy et al. (2013) Todoroki (2013)
Zhang et al. (2013) Kurokawa and Hanzawa (2013) (轟 (2013b))
Domingues et al. (2013) Kinoshita et al. (2013)
Kashyap (2013b) (半澤 et al. (2013))
Antunes et al. (2014) Mizuno et al. (2014b) (轟 (2014))
Lin et al. (2014a) Kurokawa (2014)
Mizuno et al. (2014d)
Mizuno et al. (2014a)
Domingues et al. (2014) Todoroki (2014)
Lin et al. (2014b) Mizuno et al. (2014c)

Theoretical discussions and Numerical simulations

Reference of experimental data
Hand and St. J. Russell (1988b) Hand and St. J. Russell (1988b)
Kashyap et al. (1997) Kashyap (1988)
(首藤 et al. (2003b))
(首藤 et al. (2003a))
Shuto et al. (2003)
Shuto et al. (2004b)
Shuto et al. (2004a) Kashyap (1988); Davis et al. (1996); Atkins et al. (2003)
Shuto et al. (2006) Dianov et al. (2002b); Kashyap (1988); Davis et al. (1997)
Shuto (2010)
(首藤 (2011)), Shuto (2014)
(首藤 (2012)) Dianov et al. (2002b); Davis et al. (1997)
(首藤 (2013))
Yurkov and Yakovlenko (2004), Yurkov and Yakovlenko (2005)
Yakovlenko (2004a)
Yakovlenko (2004b), Yakovlenko (2005a)
Yakovlenko (2004c), Yakovlenko (2005b)
Golyatina et al. (2004a), Tkachev and Yakovlenko (2004), Golyatina et al. (2004b)*, Golyatina et al. (2005b), Golyatina et al. (2005a) Bufetov and Dianov (2005); Dianov et al. (2002b)
Golyatina and Yakovlenko (2005)
Yakovlenko (2006a), Yakovlenko (2006c)
Bumarin and Yakovlenko (2006) Todoroki (2006a,2005b)
Yakovlenko (2006b) (Review)
Akhmediev et al. (2008)
Ankiewicz et al. (2008)
Rocha et al. (2009) André et al. (2010)
Rocha et al. (2010b) André et al. (2010)
Facão et al. (2011) André et al. (2010)
Gorbachenko et al. (2010) Bufetov and Dianov (2005)
Dovzhenko et al. (2012)
(加藤 (2013))

参考文献

K. S. Abedin.
Remote detection of fiber fuse, and protecting optical fibers.
In 秋季第66回応用物理学会学術講演会講演予稿集, volume 0, page 1, 富山県富山市, September 2009a.
(8p-ZN-5).

Kazi S. Abedin and Toshio Morioka.
Remote detection of fiber fuse propagating in optical fibers.
In Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference, March 2009.
doi: tex2html_begingrouprm10.1364/OFC.2009.OThD5.
(OThD5).

Kazi S. Abedin and Masataka Nakazawa.
Real time monitoring of a fiber fuse using an optical time-domain reflectometer.
Optics Express, 18 (20): 21315-21321, September 2010.
doi: tex2html_begingrouprm10.1364/OE.18.021315.

Kazi S. Abedin, T. Miyazaki, and M. Nakazawa.
Measurements of spectral broadening and Doppler shift of backreflections from a fiber fuse using heterodyne detection.
Optics Letters, 34 (20): 3157-3159, October 2009a.
doi: tex2html_begingrouprm10.1364/OL.34.003157.

Kazi S. Abedin, M. Nakazawa, and T. Miyazaki.
Backreflected radiation due to a propagating fiber fuse.
Optics Express, 17 (8): 6525-6531, April 2009b.
doi: tex2html_begingrouprm10.1364/OE.17.006525.

Kazi Sarwar Abedin.
Remote sensing of fiber fuse propagation using RF detection.
電子情報通信学会技術研究報告 OPE 光エレクトロニクス, 109 (159): 43-46, July 2009b.
ISSN 09135685.

N. Akhmediev, P. St. J. Russell, M. Taki, and J. M. Soto-Crespo.
Heat dissipative solitons in optical fibers.
Physics Letters A, 372 (9): 1531-1534, September 2008.
doi: tex2html_begingrouprm10.1016/j.physleta.2007.09.049.

Paulo André, Ana Rocha, Fátima Domingues, and Margarida Facão.
Thermal effects in optical fibres.
In Marco Aurélio dos Santos Bernardes, editor, Developments in Heat Transfer, chapter 1, pages 1-20. InTech, Croatia, September 2011a.
ISBN 978-953-307-569-3.
doi: tex2html_begingrouprm10.5772/22812.
(ISBN 978-953-307-569-3).

Paulo S. André, Margarida Facão, Ana M. Rocha, Paulo Antunes, and André Martins.
Evaluation of the fuse effect propagation in networks infrastructures with different types of fibers.
In Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference, March 2010.
doi: tex2html_begingrouprm10.1364/NFOEC.2010.JWA10.
(JWA10).

Paulo S. André, Fátima Domingues, Margarida Facão, and Ana M. Rocha.
Optical fuse discharge temperature determination employing the CIE color coordinate.
In Conference on Lasers and Electro-Optics Pacific Rim and International Quantum Electronics Conference (CLEOPR/IQEC), pages 1457-1549, Sydney, Australia, August 2011b.
(3700-PO-12).

A. Ankiewicz, W. Chen, P. St. J. Russell, M. Taki, and N. Akhmediev.
Velocity of heat dissipative solitons in optical fibers.
Opt. Lett., 33 (19): 2176-2178, September 2008.
doi: tex2html_begingrouprm10.1364/OL.33.002176.

P.F.C. Antunes, M. F. F. Domingues, N. J. Alberto, and P. S. André.
Optical fiber micro cavity strain sensors produced by the catastrophic fuse effect.
Photonics Technology Letters, 26 (1): 78-81, January 2014.
doi: tex2html_begingrouprm10.1109/LPT.2013.2288930.

R. M. Atkins, P. G. Simpkins, and A. D. Yablon.
Track of a fiber fuse: a Rayleigh instability in optical waveguides.
Opt. Lett., 28 (12): 974-976, June 2003.
doi: tex2html_begingrouprm10.1364/OL.28.000974.

I. A. Bufetov and E. M. Dianov.
Optical discharge in optical fibers.
Physics-Uspekhi, 48 (1): 91-94, January 2005.
doi: tex2html_begingrouprm10.1070/PU2005v048n01ABEH002081.

I. A. Bufetov, E. M. Dianov, and A. A. Frolov.
Optic discharge propagation along a fiber core.
In ICONO/LAT 2005 Technical Digest on CD-ROM, St. Petersburg, Russia, May 2005a.
(LWG4).

I. A. Bufetov, E. M. Dianov, A. A. Frolov, V. E. Fortov, and V. P. Efremov.
Dynamics of optical discharge propagation along a fiber.
In ICONO/LAT 2005 Technical Digest on CD-ROM, St. Petersburg, Russia, May 2005b.
(LSuH3).

I. A. Bufetov, A. A. Frolov, E. M. Dianov, V. E. Fortov, and V. P. Efremov.
Dynamics of fiber fuse propagation.
In Optical Fiber Communication Conference, 2005. Technical Digest. OFC/NFOEC, volume 4, Anaheim, CA, March 2005c.
doi: tex2html_begingrouprm10.1109/OFC.2005.192998.
(OThQ7).

I. A. Bufetov, A. A. Frolov, V. P. Efremov, M. Ya. Schelev, V. I. Lozovoi, V. E. Fortov, and E. M. Dianov.
Fast optical discharge propagation through optical fibres under kW-range laser radiation.
In Proceedings of the 31st European Conference on Optical Communication, volume 6, pages 39-40, Glasgow, Scotland, September 2005d. IEE's Photonics Professional Network.
(Th 4.4.2).

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, C. V. Lavrischev, and E. M. Dianov.
Fiber fuse effect under conditions of interference of two modes.
In ICONO/LAT 2007 Technical Digest on CD-ROM, Minsk, Berarusi, May 2007a.
(L01/IV-2).

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, C. V. Lavrishchev, and E. M. Dianov.
Fiber fuse effect: New results on the fiber damage structure.
In Proceedings of the 33rd European Conference on Optical Communication, volume 1, pages 79-80, Berlin, Germany, September 2007b. IEE's Photonics Professional Network.
ISBN 978-3-8007-3042-1.
(Mon 1.5.2).

I. A. Bufetov, A. A. Frolov, A. V. Shubin, M. E. Likhachev, S. V. Lavrishchev, and E. M. Dianov.
Propagation of an optical discharge through optical fibres upon interference of modes.
Quantum Electronics, 38 (5): 441-444, May 2008.
doi: tex2html_begingrouprm10.1070/QE2008v038n05ABEH013751.

E. D. Bumarin and S. I. Yakovlenko.
Temperature distribution in the bright spot of the optical discharge in an optical fiber.
Laser Physics, 16 (8): 1235-1241, August 2006.
doi: tex2html_begingrouprm10.1134/S1054660X06080123.

D. D. Davis, S. C. Mettler, and D. J. DiGiovani.
Experimental data on the fiber fuse.
In H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, editors, 27th Annual Boulder Damage Symposium: Laser-Induced Damage in Optical Materials: 1995, volume 2714 of SPIE Proceedings, pages 202-210. SPIE, May 1996.
doi: tex2html_begingrouprm10.1117/12.240382.
(Boulder, CO, USA, 30 Oct. 1995).

D. D. Davis, S. C. Mettler, and D. J. DiGiovani.
A comparative evaluation of fiber fuse models.
In H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, editors, Laser-Induced Damage in Optical Materials: 1996, volume 2966 of SPIE Proceedings, pages 592-606. SPIE, May 1997.
doi: tex2html_begingrouprm10.1117/12.274220.
(Boulder, CO, USA, 7 Oct 1996).

E. Dianov, A. Frolov, I. Bufetov, Y. Chamorovsky, G. Ivanov, and I. Vorobjev.
Fiber fuse effect in microstructured fibers.
In OFC 2003 Technical Digest, volume 2, Atlanta, March 2003.
(FH2).

E. M. Dianov, V. M. Mashinskii, V. A. Myzina, Y. S. Sidorin, A. M. Streltsov, and A. V. Chickolini.
Change of refractive index profile in the process of laser-induced fiber damage.
Sov. Lightwave Commun., 2: 293-299, February 1992.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. M. Mashinskii, V. G. Plotnichenko, M. F. Churbanov, and G. E. Snopatin.
Catastrophic destruction of fluoride and chalcogenide optical fibers.
Electron. Letters, 38 (15): 783-784, July 2002a.
doi: tex2html_begingrouprm10.1049/el:20020539.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, V. G. Plotnichenko, V. M. Mashinskii, M. F. Churbanov, and G. E. Snopatin.
Catastrophic destruction of optical fibres of various composition caused by laser radiation.
Quantum Electron., 32 (6): 476-478, June 2002b.
doi: tex2html_begingrouprm10.1070/QE2002v032n06ABEH002226.

E. M. Dianov, I. A. Bufetov, and A. A. Frolov.
Destruction of silica fiber cladding by the fuse effect.
In OFC 2004 Technical Digest, Los Angels, February 2004a.
ISBN 1-55752-767-9.
(TuB4).

E. M. Dianov, I. A. Bufetov, and A. A. Frolov.
Destruction of silica fiber cladding by the fuse effect.
Opt. Lett., 29 (16): 1852-1854, August 2004b.
doi: tex2html_begingrouprm10.1364/OL.29.001852.

E. M. Dianov, I. A. Bufetov, A. A. Frolov, Y. K. Chamorovsky, G. A. Ivanov, and I. L. Vorobjev.
Fiber fuse effect in microstructured fibers.
IEEE Photon. Technol. Lett., 16 (1): 180-181, January 2004c.
doi: tex2html_begingrouprm10.1109/LPT.2003.820465.

E. M. Dianov, A. A. Frolov, I. A. Bufetov, S. L. Semenov, Yu. K. Chamorovskii, G. A. Ivanov, and I. L. Vorob'ev.
The fibre fuse effect in microstructured fibres.
Quantum Electron., 34 (1): 59-61, January 2004d.
doi: tex2html_begingrouprm10.1070/QE2004v034n01ABEH002581.

E. M. Dianov, I. A. Bufetov, A. E. Rakitin, M. A. Melkumov, A. A. Frolov, V. E. Fortov, V. P. Efremov, and M. I. Kulish.
Temperature of optical discharge under action of laser radiation in silica-based fibres.
In Proceedings of the 31st European Conference on Optical Communication, volume 3, pages 469-470, Glasgow, Scotland, September 2005a. IEE's Photonics Professional Network.
(We 3.4.4).

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. M. Melkumov, M. I. Kulish, and A. A. Frolov.
Temperature of plasma in silica-based fibers under the action of CW laser radiation.
In International Conference on Strongly Coupled Coulomb Systems Book of Abstracts, pages 25-26, Moscow, Russia, June 2005b.
(P23).

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. A. Frolov, M. Ya. Schelev, and V. I. Lozovoi.
Detonation-like mode of the destruction of optical fibers under intense laser radiation.
J. Exp. Theo. Phys. Lett., 83 (2): 75-78, March 2006a.
doi: tex2html_begingrouprm10.1134/S002136400602007X.

E. M. Dianov, V. E. Fortov, I. A. Bufetov, V. P. Efremov, A. E. Rakitin, M. A. Melkumov, M. I. Kulish, and A. A. Frolov.
High-speed photography, spectra, and temperature of optical discharge in silica-based fibers.
IEEE Photon. Technol. Lett., 18 (6): 752-754, March 2006b.
doi: tex2html_begingrouprm10.1109/LPT.2006.871110.

F. Domingues, A. R. Frias, P. Antunes, A. O. P. Sousa, R. A. S. Ferreira, , and P. S. André.
Observation of fuse effect discharge zone nonlinear velocity regime in erbium-doped fibres.
Electron. Lett., 48 (20): 1295-1296, September 2012a.
doi: tex2html_begingrouprm10.1049/el.2012.2917.

Fátima Domingues, Ana Rocha, Paulo Antunes, Ana R. Frias, Rute A. S. Ferreira, and Paulo S. André.
Evaluation of the fuse effect propagation velocity in bend loss insensitive fibers.
In Technical Digest - 17th OptoElectronics and Communications Conference, OECC2012, pages 799-800, July 2012b.
doi: tex2html_begingrouprm10.1109/OECC.2012.6276636.
6C3-2.

Fátima Domingues, Ana Rocha, Ana R. Frias, and Paulo S. André.
Evaluation of the temperature increase on the fiber fuse effect end point.
In the 14th International Conference on Transparent Optical Networks (ICTON 2012), Coventry, England, July 2012c.
doi: tex2html_begingrouprm10.1109/ICTON.2012.6253815.
(Tu.P.22).

Fátima Domingues, Paulo Antunes, Nelia Alberto, and Paulo S. André.
Refractive index sensor based on optical fiber void cavities produced by the catastrophic fuse effect.
In Advanced Photonics 2013, OSA Technical Digest, July 2013.
doi: tex2html_begingrouprm10.1364/SENSORS.2013.SM4C.3.
SM4C.3.

M. Fátima Domingues, Paulo Antunes, Nélia Alberto, Rita Frias, Rute A. S. Ferreira, and Paulo André.
Optical strain sensor based on fpi micro-cavities produced by the fiber fuse effect.
In J. M. M. Serrano, M. López-Amo, J. M. López-Higuera, and J. D. C. Jones, editors, 23rd International Conference on Optical Fiber Sensors, volume 9157 of SPIE Proceedings, page 91571Q. SPIE, June 2014.
(P48/Paper 9157-581).

A. Yu. Dovzhenko, E. N. Rumanov, and O. E. Yachmeneva.
Effect of slight damage on the action of an optical fiber.
Dokl. Phys., 57 (10): 383-386, October 2012.
doi: tex2html_begingrouprm10.1134/S1028335812100060.
(Originally published in Russian, Doklady Akademii Nauk, 2012, Vol. 446, No. 5, pp. 510513).

T. J. Driscoll, J. M. Calo, and N. M. Lawandy.
Explaining the optical fuse.
Opt. Lett., 16 (13): 1046-1048, July 1991.
doi: tex2html_begingrouprm10.1364/OL.16.001046.

D. A. Dvoretskiy, V. F. Hopin, A. N. Gur'yanov, L. K. Denisov, L. D. Ishakova, and I. A. Bufetov.
Optical losses in silica based fibers within the temperature range from 300 to 1500 K.
Science and Education: electronic scientific-technical journal, (5), May 2013.
doi: tex2html_begingrouprm10.7463/0513.0554843.
(in Russian).

M. Facão, A. M. Rocha, and P. S. André.
Traveling solutions of the fuse effect in optical fibers.
Journal of Lightwave Technology, 29 (1): 109-114, January 2011.
doi: tex2html_begingrouprm10.1109/JLT.2010.2094602.

A. A. Frolov, I. A. Bufetov, and E. M. Dianov.
Propagation of the optical discharge through the fibers with thin silica cladding.
In ICONO/LAT 2005 Technical Digest on CD-ROM, St. Petersburg, Russia, May 2005a.
(LSuH4).

A. A. Frolov, E. M. Dianov, and I. A. Bufetov.
Destruction of silica fiber cladding by the optical discharge propagation.
In ICONO/LAT 2005 Technical Digest on CD-ROM, St. Petersburg, Russia, May 2005b.
(LThI6).

R. I. Golyatina and S. I. Yakovlenko.
On the mechanism of optical discharge stop in the tapered region of fibre cladding.
Quantum Electron., 35 (5): 422-424, May 2005.
doi: tex2html_begingrouprm10.1070/QE2005v035n05ABEH003425.

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko.
Calculation of the motion of the laser radiation absorption thermal wave in a fiberguide.
Bulletin of the Lebedev Physics Institute, (9): 22-29, September 2004a.
ISSN 10683356.
(Kratk. Soobshch. Fiz., 9, pp.26-33, 2004, in Russian).

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko.
Calculation of velocity and threshold for a thermal wave of laser radiation absorption in a fiber optic waveguide based on the two-dimensional nonstationary heat conduction equation.
Laser Physics, 14 (11): 1429-1433, November 2004b.

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko.
2D calculation of a fiber fuse propagation.
In ICONO/LAT 2005 Technical Digest on CD-ROM, St. Petersburg, Russia, May 2005a.
(LSuH5).

R. I. Golyatina, A. N. Tkachev, and S. I. Yakovlenko.
Analysis of a heat wave induced by laser radiation absorption in an optical fiber on the basis of a 2D nonstationary heat conduction equation.
Tech. Phys., 50 (2): 232-236, February 2005b.
doi: tex2html_begingrouprm10.1134/1.1866441.
(Zh. Tech. Fiz. 75 (2) 94 (2005)).

V. I. Gorbachenko, A. Yu. Dovzhenko, A. G. Merzhanov, É. N. Rumanov, V. E. Fortov, and O. E. Yachmeneva.
Propagation limits for a slow wave of optical breakdown in a fiber light guide.
Dokl. Phys., 55 (8): 384-387, August 2010.
doi: tex2html_begingrouprm10.1134/S1028335810080045.
(Originally published in Russian, Doklady Akademii Nauk, 2010, Vol. 433, No. 5, pp. 618621).

Woosung Ha, Yoonseob Jeong, and Kyunghwan Oh.
Fiber fuse effect in hollow optical fibers.
Opt. Lett., 36 (9): 1536-1538, May 2011.
doi: tex2html_begingrouprm10.1364/OL.36.001536.

D. P. Hand and T. A. Birks.
Single-mode tapers as 'fibre fuse' damage circuit-breakers.
Electron. Lett., 25 (1): 33-34, January 1989.
doi: tex2html_begingrouprm10.1049/el:19890024.

D. P. Hand and P. St. J. Russell.
Soliton-like thermal shock-waves in optical fibers: origin of periodic damage tracks.
In Eur. Conf. Optical Communications, pages 111-114, September 1988a.
(Brighton, UK, 11-15 Sep 1988).

D. P. Hand and P. St. J. Russell.
Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse.
Opt. Lett., 13 (9): 767-769, September 1988b.
doi: tex2html_begingrouprm10.1364/OL.13.000767.

D. P. Hand, J. E. Townsend, and P. St. J. Russell.
Optical damage in fibres: the fibre fuse.
In Digest of Conf. on Lasers and Electro-Optics, April 1988.
(Anaheim, US, Paper WJ1).

N. Hanzawa, K. Kurokawa, K. Tsujikawa, T. Matsui, and S. Tomita.
Suppression of fiber fuse propagation in photonic crystal fiber (PCF) and hole assisted fiber.
In Technical Digest of Microoptics Conference, page M7, October 2009.

Nobutomo Hanzawa, Kenji Kurokawa, Kyozo Tsujikawa, Takashi Matsui, Kazuhide Nakajima, Shigeru Tomita, and Makoto Tsubokawa.
Suppression of fiber fuse propagation in hole assisted fiber and photonic crystal fiber.
J. Lightwave Technology, 28 (15): 2115-2120, July 2010a.
doi: tex2html_begingrouprm10.1109/JLT.2010.2052913.

Nobutomo Hanzawa, Kenji Kurokawa, Kyozo Tsujikawa, Katsuhiro Takenaga, Shoji Tanigawa, Shoichiro Matsuo, and Shigeru Tomita.
New propagation mode of fiber fuse with a long-period damage track in hole-assisted fiber (HAF).
In Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference, March 2010b.
doi: tex2html_begingrouprm10.1364/OFC.2010.OMO5.
(OMO5).

Nobutomo Hanzawa, Kenji Kurokawa, Kyozo Tsujikawa, Katsuhiro Takenaga, Shoji Tanigawa, Shoichiro Matsuo, and Shigeru Tomita.
Observation of a propagation mode of a fiber fuse with a long-period damage track in hole-assisted fiber.
Optics Letters, 35 (12): 2004-2006, June 2010c.
doi: tex2html_begingrouprm10.1364/OL.35.002004.

Nobutomo Hanzawa, Kenji Kurokawa, Kyozo Tsujikawa, and Shigeru Tomita.
Dynamics of new propagation mode of fiber fuse in hole-assisted fiber (HAF).
In Technical Digest - 15th OptoElectronics and Communications Conference, OECC2010, pages 172-173, July 2010d.
7C2-5.

R. Kashyap.
Self-propelled self-focusing damage in optical fibres.
In F. J. Duarte, editor, Lasers '87; Proc. the 10th Int. Conf. Lasers and Applications, pages 859-866, McLean, VA, January 1988. STS Press.
(Lake Tahoe, Nevada, USA, Dec. 7-11, 1987).

R. Kashyap.
High average power effects in optical fibers and devices.
In H. G. Limberger and M. J. Matthewson, editors, Reliability of Optical Fiber Components, Devices, Systems, and Networks, volume 4940 of SPIE Proceedings, pages 108-117. SPIE, April 2003.
doi: tex2html_begingrouprm10.1117/12.477395.
(Brugge, Belgium, 28 Oct. 2002).

R. Kashyap.
Fiber fuse - from a curious effect to a critical issue.
In Proceedings of the 38th European Conference on Optical Communication, September 2012a.
(We.3.G.1).

R. Kashyap.
Fiber fuse - from a curious effect to a critical issue: A 25th year retrospective.
Optics Express, 21 (5): 6422-6441, March 2013a.
doi: tex2html_begingrouprm10.1364/OE.21.006422.

R. Kashyap and K. J. Blow.
Spectacular demonstration of catastrophic failure in long lengths of optical fibre via self-propelled self-focusing.
Eighth National Quantum Electronics Conference, Post Deadline (Poster) Session PD7, September 1987.
(21-25 Sept.).

R. Kashyap and K. J. Blow.
Observation of catastrophic self-propelled self-focusing in optical fibres.
Electron. Lett., 24 (1): 47-49, January 1988.
doi: tex2html_begingrouprm10.1049/el:19880032.

R. Kashyap, A. Sayles, and G. F. Cornwell.
Heat flow modeling and visualization of catastrophic selfpropagating damage in singlemode optical fibers at low powers.
In H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, and M. J. Soileau, editors, Laser-Induced Damage in Optical Materials: 1996, volume 2966 of SPIE Proceedings, pages 586-591. SPIE, May 1997.
doi: tex2html_begingrouprm10.1117/12.274219.
(Boulder, CO, USA, 7 Oct 1996).

Raman Kashyap.
History and progress of the fibre fuse.
In Technical Digest - 17th OptoElectronics and Communications Conference, OECC2012, pages 807-808, July 2012b.
doi: tex2html_begingrouprm10.1109/OECC.2012.6276640.
6C4-1.

Raman Kashyap.
When a friend becomes a foe: The optical fiber fuse.
In 3rd Workshop on Specialty Optical Fibers and their Applications, August 2013b.
doi: tex2html_begingrouprm10.1364/WSOF.2013.F3.1.
(F3.1).

Takahiro Kinoshita, Norihiko Sato, and Makoto Yamada.
Detection and termination system for optical fiber fuse.
In OptoElectronics and Communications Conf. held jointly with 2013 Int. Conf. on Photonics in Switching (OECC/PS), July 2013.
(Paper WS4-6).

Kenji Kurokawa.
Optical fiber for high-power optical communication.
Crystals, 2 (4): 1382-1392, September 2012.
doi: tex2html_begingrouprm10.3390/cryst2041382.

Kenji Kurokawa.
Techniques to detect and stop fiber fuses.
In Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference, March 2014.
doi: tex2html_begingrouprm10.1364/OFC.2014.M3J.2.
(M3J).

Kenji Kurokawa and Nobumoto Hanzawa.
Suppression of fiber fuse propagation and its break in compact fiber fuse terminator.
In OptoElectronics and Communications Conf. held jointly with 2013 Int. Conf. on Photonics in Switching (OECC/PS), July 2013.
(Paper WS4-5).

Kenji Kurokawa and Nobutomo Hanzawa.
Fiber fuse propagation and its suppression in hole-assisted fibers.
IEICE Transactions on Communications, E94.B (2): 384-391, February 2011.
doi: tex2html_begingrouprm10.1587/transcom.E94.B.384.

Kenji Kurokawa, Nobutomo Hanzawa, Kyozo Tsujikawa, and Shigeru Tomita.
Power dependence of fiber fuse propagation with a long-period damage track in hole-assisted fiber.
IEICE Electronics Express, 8 (11): 802-807, June 2011.
doi: tex2html_begingrouprm10.1587/elex.8.802.

Meredith M. Lee, Jeffrey M. Roth, Todd G. Ulmer, and Colm V. Cryan.
The fiber fuse phenomenon in polarization-maintaining fibers at 1.55$\mu$m.
In Proc. of the Conference on Lasers and Electro-Optics (CLEO), May 2006.
ISBN 1-55752-813-6.
(JWB66).

Guei-Ru Lin, Mohamad Diaa Baiad, Mathieu Gagne, Wen-Fung Liu, and R. Kashyap.
Harnessing the fiber fuse for sensing applications.
Optics Express, 22 (8): 8962-8969, April 2014a.
doi: tex2html_begingrouprm10.1364/OE.22.008962.

Guei-Ru Lin, Mohamad Diaa Baiad, Mathieu Gagne, Wen-Fung Liu, and Raman Kashyap.
A novel refractive index sensor based on an induced micro-structure fiber.
In J. M. M. Serrano, M. López-Amo, J. M. López-Higuera, and J. D. C. Jones, editors, 23rd International Conference on Optical Fiber Sensors, volume 9157 of SPIE Proceedings, page 915773. SPIE, June 2014b.
(Paper 9157-227).

Y. Mizuno, N. Hayashi, H Tanaka, and K. Nakamura.
Spiral propagation of polymer optical fiber fuse accompanied by spontaneous burst and its real-time monitoring using brillouin scattering.
Photonics Journal, IEEE, 6 (3): 6600307, June 2014a.
doi: tex2html_begingrouprm10.1109/JPHOT.2014.2323301.

Yosuke Mizuno, Neisei Hayashi, Hiroki Tanaka, Kentaro Nakamura, and S. Todoroki.
Observation of polymer optical fiber fuse.
Appl. Phys. Lett., 104 (4): 043302, January 2014b.
doi: tex2html_begingrouprm10.1063/1.4863413.

Yosuke Mizuno, Neisei Hayashi, Hiroki Tanaka, Kentaro Nakamura, and S. Todoroki.
First observation of fiber fuse phenomenon in polymer optical fibers.
In J. M. M. Serrano, M. López-Amo, J. M. López-Higuera, and J. D. C. Jones, editors, 23rd International Conference on Optical Fiber Sensors, volume 9157 of SPIE Proceedings, page 9157AI. SPIE, June 2014c.
(P109/Paper 9157-173).

Yosuke Mizuno, Neisei Hayashi, Hiroki Tanaka, Kentaro Nakamura, and S. Todoroki.
Propagation mechanism of polymer optical fiber fuse.
Scientific Reports, 4: 4800, April 2014d.
doi: tex2html_begingrouprm10.1038/srep04800.

N. Nishimura, K. Seo, M. Shiino, and R. Yuguchi.
Study of high-power endurance characteristics in optical fiber link.
In Technical Digest of Optical Amplifiers and Their Applications, pages 193-195, July 2003.
ISBN 1-55752-752-0.
(TuC4).

R. M. Percival, E. S. R. Sikora, and R. Wyatt.
Catastrophic damage and accelerated ageing in bent fibres caused by high optical powers.
Electron. Lett., 36 (5): 414-416, March 2000.
doi: tex2html_begingrouprm10.1049/el:20000403.

A. M. Rocha, M. Facão, A. Martins, and P. S. André.
Simulation of fiber fuse effect propagation.
In International Conf. on Transparent Networks - Mediterranean Winter, 2009, Angers, France, December 2009.
doi: tex2html_begingrouprm10.1109/ICTONMW.2009.5385610.
(FrP.12).

A. M. Rocha, P. Antunes, F. Domingues, M. Facão, and P. S. André.
Configuration for detecting the fiber fuse propagation using a FBG sensor.
In 12th International Conf. on Transparent Networks, Munich, Germany, June 2010a.
doi: tex2html_begingrouprm10.1109/ICTON.2010.5549119.
(We.P.20).

A. M. Rocha, M. Facão, and P. S. André.
Study of fiber fuse effect on different types of single mode optical fibers.
In Dave Faulkner, editor, NOC/OC&I 2010 Proceedings : 15th European Conference on Networks and Optical Communications and 5th Conference on Optical Cabling and Infrastructure (ISBN: 9789729341939), pages 71-75, Faro-Algarve, Portugal, June 2010b. Universidade do Algarve.
(Presented on June 10).

A. M. Rocha, P. S. André, M. F. F. Domingues, and M. Facão.
Reflected light due to the fiber fuse propagation.
In International conference on computer as a tool - Eurocon 2011 and 8 th conference of Telecommunications, Lisbon, Portugal, April 2011a.
(535).

A. M. Rocha, P. F. C. Antunes, M. F. F. Domingues, M. Facão, and P. S. André.
Detection of fiber fuse effect using FBG sensors.
IEEE Sensors Journal, 11 (6): 1390 -1394, June 2011b.
doi: tex2html_begingrouprm10.1109/JSEN.2010.2094183.

A. M. Rocha, G. Fernandes, F. Domingues, M. Niehus, M. Facão, and P. S. André.
Halting the fuse discharge propagation using optical fiber microwires.
Optics Express, 20 (19): 21083-21088, September 2012.
doi: tex2html_begingrouprm10.1364/OE.20.021083.

Ana Rocha, Gil Fernandes, F. Domingues, Armando Pinto, Margarida Facão, and Paulo André.
Fiber fuse effect propagation break using optical fiber taper.
In Technical Digest - 16th OptoElectronics and Communications Conference, OECC2011, pages 593-594, July 2011c.
(7P3-38).

Ana M. Rocha, Fátima Domingues, Margarida Facão, and Paulo S. André.
Threshold power of fiber fuse effect for different types of optical fiber.
In the 13th International Conference on Transparent Optical Networks (ICTON 2011), pages 1457-1549, Stockholm, Sweden, June 2011d.
doi: tex2html_begingrouprm10.1109/ICTON.2011.5971025.
(Tu.P.13).

Edson H. Sekiya, Kazuya Saito, Yao Bing, Akira Ogura, and Kazumasa Ohsono.
Fiber fuse in multi core fibers.
電子情報通信学会技術研究報告 OFT 光ファイバ応用技術, 112 (194): 19-22, August 2012.
ISSN 09135685.

K. Seo, N. Nishimura, M. Shiino, R. Yuguchi, and H. Sasaki.
Evaluation of high-power endurance in optical fiber links.
Furukawa Review, (24): 17-22, July 2003a.

K. Seo, N. Nishimura, M. Shiino, R. Yuguchi, and H. Sasaki.
Examination of threshold power for high-power problems in optical fiber.
In Proc. Int. Laser Safety Conf., pages 298-302, Jacksonville, FL, March 2003b.
ISBN 0912035382.

Y. Shuto.
Evaluation of high-temperature absorption coefficients of ionized gas plasmas in optical fibers.
IEEE Photon. Technol. Lett., 22 (3): 134-136, February 2010.
doi: tex2html_begingrouprm10.1109/LPT.2009.2036589.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase.
Simulation of fiber fuse phenomenon in single-mode optical fibers.
J. Lightwave Tech., 21 (11): 2511-2517, November 2003.
doi: tex2html_begingrouprm10.1109/JLT.2003.819142.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase.
Fiber fuse phenomenon in step-index single-mode optical fibers.
IEEE J. Quantum Electronics, 40 (8): 1113-1121, August 2004a.
doi: tex2html_begingrouprm10.1109/JQE.2004.831635.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase.
Evaluation of high-temperature absorption coefficients of optical fibers.
IEEE Photon. Technol. Lett., 16 (4): 1008-1010, April 2004b.
doi: tex2html_begingrouprm10.1109/LPT.2004.824633.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase.
Fiber fuse generation in single-mode fiber-optic connectors.
IEEE Photon. Techol. Lett., 16 (1): 174-176, January 2004c.
doi: tex2html_begingrouprm10.1109/LPT.2003.820479.

Y. Shuto, S. Yanagi, S. Asakawa, M. Kobayashi, and R. Nagase.
Fiber fuse phenomenon in triangular-profile single-mode optical fibers.
J. Lightwave Technol., 24 (2): 846-852, February 2006.
ISSN 07338724.

Yoshito Shuto.
Heat conduction modeling of fiber fuse in single-mode optical fiber.
J. Photonics, 2014: 645207, February 2014.
doi: tex2html_begingrouprm10.1155/2014/645207.

H. Takara, H. Masuda, H. Kanbara, Y. Abe, Y. Miyamoto, R. Nagase, T. Morioka, S. Matsuoka, M. Shimizu, and K. Hagimoto.
Evaluation of fiber fuse characteristics of hole-assisted fiber for high power optical transmission systems.
In Proceedings of the 35th European Conference on Optical Communication, page 312, September 2009.
ISBN 978-1-4244-5096-1.
(P1.12).

K. Takenaga, S. Omori, R. Goto, S. Tanigawa, S. Matsuo, and K. Himeno.
Evaluation of high-power endurance of bend-insensitive fibers.
In Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference, February 2008.
doi: tex2html_begingrouprm10.1109/OFC.2008.4528147.
(JWA11).

A. N. Tkachev and S. I. Yakovlenko.
Calculation of the velocity and threshold of a thermal absorption wave of laser radiation in an optical fibre.
Quantum Electron., 34 (8): 761-764, August 2004.
doi: tex2html_begingrouprm10.1070/QE2004v034n08ABEH002844.

S. Todoroki.
In-situ observation of fiber-fuse propagation.
In Proc. 30th European Conf. Optical Communication Post-deadline papers, pages 32-33, Stockholm, Sweden, September 2004. Kista Photonics Research Center.
(Th4.3.3).

S. Todoroki.
In-situ observation of fiber-fuse propagation.
Jpn. J. Appl. Phys., 44 (6A): 4022-4024, June 2005a.
doi: tex2html_begingrouprm10.1143/JJAP.44.4022.

S. Todoroki.
Origin of periodic void formation during fiber fuse.
Optics Express, 13 (17): 6381-6389, August 2005b.
doi: tex2html_begingrouprm10.1364/OPEX.13.006381.

S. Todoroki.
Transient propagation mode of fiber fuse leaving no voids.
Optics Express, 13 (23): 9248-9256, November 2005c.
doi: tex2html_begingrouprm10.1364/OPEX.13.009248.

S. Todoroki.
Animation of fiber fuse damage, demonstrating periodic void formation.
Opt. Lett., 30 (19): 2551-2553, October 2005d.
doi: tex2html_begingrouprm10.1364/OL.30.002551.

S. Todoroki.
Ultrahigh-speed videography of fiber fuse propagation: a tool for studying void formation.
In International Conference on Lasers, Applications, and Technologies 2005: Laser-Assisted Micro- and Nanotechnologies, volume 6161 of SPIE Proceedings, pages 61610L-1-8. SPIE, February 2006a.
ISBN 0-8194-6213-6.
doi: tex2html_begingrouprm10.1117/12.675066.
(St. Petersburg, Russia, 15 May 2005, LSuH1).

S. Todoroki.
In-situ observation of fiber-fuse ignition.
In V. I. Konov, V. Y. Panchenko, K. Sugioka, and V. P. Veiko, editors, International Conference on Lasers, Applications, and Technologies 2005: Laser-Assisted Micro- and Nanotechnologies, volume 6161 of SPIE Proceedings, pages 61610N-1-4. SPIE, February 2006b.
ISBN 0-8194-6213-6.
doi: tex2html_begingrouprm10.1117/12.675080.
(St. Petersburg, Russia, 14 May 2005, LSK3).

S. Todoroki.
In situ observation of modulated light emission of fiber fuse synchronized with void train over hetero-core splice point.
PLoS ONE, 3 (9): e3276, September 2008.
doi: tex2html_begingrouprm10.1371/journal.pone.0003276.

S. Todoroki.
Light and voids of fiber fuse: precise comparison of in situ image and fused fibers.
In 19th International Laser Physics Workshop: Book of Abstracts, page 463, Foz do Iguaçu, Brazil, July 2010.
(9.3.3).

S. Todoroki.
Threshold power reduction of fiber fuse propagation through a white tight-buffered single-mode optical fiber.
IEICE Electronics Express, 8 (23): 1978-1982, December 2011.
doi: tex2html_begingrouprm10.1587/elex.8.1978.

S. Todoroki.
Fiber fuse propagation behavior.
In Yasin Moh, Sulaiman W. Harun, and Hamzah Arof, editors, Selected Topics on Optical Fiber Technology, chapter 20, pages 551-570. InTech, Croatia, February 2012a.
ISBN 978-953-51-0091-1.
doi: tex2html_begingrouprm10.5772/26390.
(doi: 10.5772/26390, ISBN: 978-953-51-0091-1).

S. Todoroki.
Partially self-pumped fiber fuse propagation through a white tight-buffered single-mode optical fiber.
In Optical Fiber Communication Conference, OSA Technical Digest. Optical Society of America, March 2012b.
doi: tex2html_begingrouprm10.1364/OFC.2012.OTh4I.4.
paper OTh4I.4.

S. Todoroki.
Fiber fuse propagation modes in typical single-mode fibers.
In Optical Fiber Communication Conference, OSA Technical Digest. Optical Society of America, March 2013.
doi: tex2html_begingrouprm10.1364/NFOEC.2013.JW2A.11.
paper JW2A.11.

S. Todoroki.
Fiber fuse -- light-induced continuous breakdown of silica glass optical fiber.
NIMS Monographs. Springer Japan, Tokyo, May 2014.
ISBN 978-4-431-54576-7.
doi: tex2html_begingrouprm10.1007/978-4-431-54577-4.

Ji Wang, Stuart Gray, Donnell Walton, and Luis Zenteno.
Fiber fuse in high-power optical fiber.
In Ming-Jun Li, Ping Shum, Ian H. White, and Xingkun Wu, editors, Passive Components and Fiber-based Devices V, volume 7134 of SPIE Proceedings, pages 71342E-1-9. SPIE, October 2008.
doi: tex2html_begingrouprm10.1117/12.803114.
(Hangzhou, China).

R. Wyatt, R. M. Percival, and R. Kashyap.
Optical communications system and method of protecting an optical route.
US Patent No.7162161, May 2001.
(Issued: Jan. 9, 2007, Filed: Mar 14, 2001).

S. I. Yakovlenko.
The formation of a chain of cavities under the action of laser radiation in a fiberguide.
Bulletin of the Lebedev Physics Institute, (7): 21-29, July 2004a.
ISSN 10683356.
(Kratk. Soobshch. Fiz., 7, pp.25-34, 2004, in Russian).

S. I. Yakovlenko.
Plasma behind the front of a damage wave and the mechanism of laser-induced production of a chain of caverns in an optical fibre.
Quantum Electron., 34 (8): 765-770, August 2004b.
doi: tex2html_begingrouprm10.1070/QE2004v034n08ABEH002845.

S. I. Yakovlenko.
On reasons for strong absorption of light in an optical fibre at high temperature.
Quantum Electron., 34 (9): 787-789, September 2004c.
doi: tex2html_begingrouprm10.1070/QE2004v034n09ABEH002762.

S. I. Yakovlenko.
Plasma behind a front of a wave of optical fiber destruction and the nature of occurrence of periodic emptiness under influence of laser radiation.
In ICONO/LAT 2005 Technical Digest on CD-ROM, St. Petersburg, Russia, May 2005a.
(IFM4).

S. I. Yakovlenko.
About the reasons of strong photoabsorption in an optical fiber at the high temperature.
In ICONO/LAT 2005 Technical Digest on CD-ROM, St. Petersburg, Russia, May 2005b.
(IFM5).

S. I. Yakovlenko.
Plasma in bright spot and nature of void chain in fiber fuse track.
In V. I. Konov, V. Y. Panchenko, K. Sugioka, and V. P. Veiko, editors, International Conference on Lasers, Applications, and Technologies 2005: Laser-Assisted Micro- and Nanotechnologies, volume 6161 of SPIE Proceedings, pages 61610M-1-6. SPIE, February 2006a.
ISBN 0819462136.
doi: tex2html_begingrouprm10.1117/12.675077.
(St. Petersburg, Russia, 15 May 2005, LSuH2, in print).

S. I. Yakovlenko.
Physical processes upon the optical discharge propagation in optical fiber.
Laser Physics, 16 (9): 1273-1290, September 2006b.
doi: tex2html_begingrouprm10.1134/S1054660X06090015.

S. I. Yakovlenko.
Mechanism for the void formation in the bright spot of a fiber fuse.
Laser Physics, 16 (3): 474-476, March 2006c.
doi: tex2html_begingrouprm10.1134/S1054660X0603008X.

M. Yamada, A. Tomoe, T. Kinoshita, O. Koyama, Y. Katuyama, and T. Shibuya.
Heating and burning of optical fibers and cables by light scattered from bubble train formed by optical fiber fuse.
IEICE Transactions on Communications, E95.B (8): 2638-2641, August 2012a.
doi: tex2html_begingrouprm10.1587/transcom.E95.B.2638.

M. Yamada, A. Tomoe, and H. Takara.
Light scattering characteristics of hole formed by fibre fuse.
Electronics Letters, 49 (9): 519-520, April 2012b.
ISSN 0013-5194.
doi: tex2html_begingrouprm10.1049/el.2012.0409.

Makoto Yamada, Osanori Koyama, Yutaka Katsuyama, and Takashi Shibuya.
Heating and burning of optical fiber by light scattered from bubble train formed by optical fiber fuse.
In Proceedings of Optical Fiber Communication/National Fiber Optic Engineers Conference, March 2011a.
doi: tex2html_begingrouprm10.1364/NFOEC.2011.JThA1.
(JThA1).

Makoto Yamada, Akisumi Tomoe, Osanori Koyama, Yutaka Katsuyama, and Takashi Shibuya.
Heating and burning of various optical fibers by light scattered from bubble train formed by fiber fuse.
In Technical Digest - 16th OptoElectronics and Communications Conference, OECC2011, pages 581-582, July 2011b.
(7P3-32).

S. Yanagi, S. Asakawa, and R. Naruse.
Characteristics of fiber-optic connector at high-power optical incidence.
Electron. Lett., 38 (17): 977-978, August 2002.
doi: tex2html_begingrouprm10.1049/el:20020647.

S. Yanagi, S. Asakawa, M. Kobayashi, Y. Shuto, and R. Naruse.
Fiber fuse terminator.
In The 5th Pacific Rim Conference on Lasers and Electro-Optics, volume 1, page 386, July 2003.
doi: tex2html_begingrouprm10.1109/CLEOPR.2003.1274838.
(W4J-(8)-6, Taipei. Taiwan, 22-26 Jul. 2003).

E. Yurkov and S. I. Yakovlenko.
Instability of cylindrical cavity in a liquid for a negative tension coefficient.
Bulletin of the Lebedev Physics Institute, (11): 16-23, November 2004.
(Kratk. Soobshch. Fiz., 4, pp.21-29, 2004, in Russian).

E. Yurkov and S. I. Yakovlenko.
Instability of cylindrical cavity in a viscous liquid with a negative tension coefficient.
Bulletin of the Lebedev Physics Institute, (4): 42-47, April 2005.
(Kratk. Soobshch. Fiz., 4, pp.50-56, 2005, in Russian).

Hanwei Zhang, Pu Zhou, Xiaolin Wang, Hu Xiao, and Xiaojun Xu.
Fiber fuse effect in high-power double-clad fiber laser.
In Conf. on Lasers and Electro-Optics Pacific Rim (CLEO-PR), July 2013.
doi: tex2html_begingrouprm10.1109/CLEOPR.2013.6600547.
(Paper WPD-4).

首藤 義人.
単一モード光ファイバにおけるファイバヒューズの熱伝導モデルの検討.
電子情報通信学会和文論文誌B, J94-B (8): 928-937, August 2011.

首藤 義人.
単一モード光ファイバにおけるファイバヒューズの光パワーしきい値の検討.
電子情報通信学会和文論文誌B, J95-B (1): 1-10, January 2012.

首藤 義人.
光コネクタにおける高パワー通光時の損傷現象の検討.
電子情報通信学会和文論文誌B, J96-B (6): 605-614, June 2013.

首藤 義人, 柳 秀一, 浅川 修一郎, 小林 勝, and 長瀬 亮.
光ファイバにおけるファイバヒューズ伝搬機構の検討.
電子情報通信学会技術研究報告 OPE 光エレクトロニクス, 103 (271): 43-46, August 2003a.

首藤 義人, 柳 秀一, 浅川 修一郎, and 長瀬 亮.
単一モード光ファイバにおけるファイバヒューズ発生機構の検討.
電子情報通信学会論文誌, J86-C (3): 252-261, March 2003b.

辻川 恭三, 半澤 信智, and 冨田 茂.
一次元熱伝導モデルによる光ファイバヒューズ現象の分析.
In 電子情報通信学会2010年ソサイエティ大会, volume B, 大阪府堺市, September 2010.
(B-13-6).

黒河 賢二.
光ファイバ通信の高入力化に向けた光ファイバの検討.
電子情報通信学会和文論文誌B, J96-B (3): 348-355, March 2013.

黒河 賢二, 半澤 信智, 辻川 恭三, 田嶋 克介, and 冨田 茂.
PCFにおけるファイバフューズ伝搬の検討.
電子情報通信学会総合大会講演論文集 通信(2), pages B-13-27, March 2009.

黒河 賢二, 半澤 信智, 辻川 恭三, and 冨田 茂.
ホールアシストファイバにおけるファイバヒューズ伝搬の孔径依存性.
電子情報通信学会技術研究報告 OFT 光ファイバ応用技術, pages 73-76, March 2012.

柳 秀一, 浅川 修一郎, 小林 勝, 首藤 義人, and 長瀬 亮.
ファイバ・ヒューズ遮断部品の開発.
電子情報通信学会技術研究報告 OPE 光エレクトロニクス, 104 (507): 21-26, December 2004.

竹永 勝宏, 谷川 庄二, 松尾 昌一郎, and 藤巻 宗久.
Hole-Assisted Fiberにおけるファイバヒューズ現象.
電子情報通信学会総合大会講演論文集 通信(2), pages B-10-23, March 2009a.

竹永 勝宏, 谷川 庄二, 松尾 昌一郎, and 藤巻 宗久.
各種光ファイバのファイバヒューズの評価.
電子情報通信学会技術研究報告 OCS 光通信システム, 109 (302): 73-76, November 2009b.
ISSN 09135685.

竹永 勝宏, 谷川 庄二, 松尾 昌一郎, and 藤巻 宗久.
空孔アシストファイバにおけるファイバヒューズ現象.
フジクラ技報, (118): 1-5, April 2010.

谷川 庄二, 竹永 勝宏, 松尾 昌一郎, and 藤巻 宗久.
各種低曲げ損失ファイバのファイバヒューズの評価.
In 電子情報通信学会2009年ソサイエティ大会講演論文誌集 通信, volume B, 新潟県新潟市, September 2009.
(次世代伝送用光ファイバの展望 BS-7-4).

半澤 信智, 辻川 恭三, 坂本 泰志, 松井 隆, 黒河 賢二, and 冨田 茂.
フォトニック結晶ファイバにおける入力パワー拡大の基礎検討.
電子情報通信学会技術研究報告 OFT 光ファイバ応用技術, 109 (59): 21-26, May 2009.
ISSN 09135685.

半澤 信智, 黒河 賢二, 辻川 恭三, and 冨田 茂.
空孔アシストファイバにおけるファイバヒューズ伝搬の観察.
In 電子情報通信学会2010年ソサイエティ大会, volume B, 大阪府堺市, September 2010.
(B-13-5).

半澤 信智, 黒河 賢二, 辻川 恭三, 中島 和秀, and 山本 文彦.
空孔アシストファイバにおける特異なファイバヒューズ伝搬特性.
電子情報通信学会和文論文誌B, J96-B (12): 1369-1377, December 2013.

加藤 進.
イオン化に伴う波面の構造と形成機構.
In 日本物理学会第68回年次大会講演概要集, number 2, March 2013.
(27pPSB-35).

藤田 仁 and 森下 裕一.
GIファイバによるファイバヒューズの遮断.
In 電子情報通信学会ソサイエティ大会講演論文集, September 2004.
(B-10-5).

山田 誠, 木下 貴博, 巴 亮清, and 渋谷 隆.
光ファイバヒューズによって形成された空孔からの光散乱特性.
電子情報通信学会和文論文誌B, J95-B (11): 1529-1536, November 2012.

坂本 泰志, 松井 隆, 半澤 信智, 辻川 恭三, 黒河 賢二, and 冨田 茂.
フォトニック結晶ファイバの実効断面積拡大と耐ヒューズ特性.
In 電子情報通信学会2010年ソサイエティ大会, volume B, 大阪府堺市, September 2010.
(BS-6-3).

轟 眞市.
ファイバフューズ損傷写真に基づく周期的空孔生成機構の考察.
In 秋季第66回応用物理学会学術講演会講演予稿集, volume 3, page 1058, 徳島県徳島市, September 2005.
(8p-T-21).

轟 眞市.
ファイバフューズの自然停止に伴う2重周期的空孔列の生成.
In 日本セラミックス協会2006年年会講演予稿集, page 220, 東京都目黒区, March 2006a.
(2P134).

轟 眞市.
光ファイバ内部に刻まれたモールス信号.
In 日本セラミックス協会2006年年会講演予稿集, page 332, 東京都目黒区, March 2006b.
(第31回セラミックスに関する顕微鏡写真展).

轟 眞市.
考古学的手法によるファイバフューズの損傷生成機構の考察.
In The 16th Meeting on Glasses for Photonics講演要旨集, pages 7-8, January 2006c.
(4).

轟 眞市.
ファイバフューズ―その危うさと怪しさ.
New Glass, 21 (2): 45-52, June 2006d.

轟 眞市.
超高速ビデオカメラによるファイバフューズ発生、伝搬、自然停止の直接観察.
電子情報通信学会技術研究報告 OCS 光通信システム, 106 (210): 33-38, August 2006e.
(OCS2006-35).

轟 眞市.
光ファイバーの自壊連鎖現象―ファイバーフューズ.
O plus E, 30 (11): 1188-1191, November 2008.
(試料写真が表紙に採用).

轟 眞市.
ファイバフューズの伝搬挙動.
In 電子情報通信学会2010年ソサイエティ大会, volume B, 大阪府堺市, September 2010.
(シンポジウム: 光ファイバのハイパワー化に関する技術動向 BS-6).

轟 眞市.
ファイバフューズ:光通信にとっての眠れる悪魔.
オプトロニクス, 31 (4): 195-200, April 2012.
(連載: 光通信の基礎 ー原点を見直し、将来を考えるー 第16回).

轟 眞市.
ファイバフューズの伝搬モードと伝搬しきい値.
電子情報通信学会和文論文誌B, J96-B (3): 243-248, March 2013a.
(解説論文、ネットワーク社会のさらなる発展を支える光通信技術論文特集).

轟 眞市.
研究者の目をくらまし続けてきたファイバフューズ.
電子情報通信学会誌, 96 (6): 441-443, June 2013b.

轟 眞市.
ファイバフューズの伝搬モードと自己ポンプ効果.
In レーザー学会学術講演会第34回年次大会, 福岡県北九州市, January 2014.
(G3 21pVII2).

轟 眞市 and 井上 悟.
ファイバフューズ点火現象の直接観察.
In 第46回ガラスおよびフォトニクス材料討論会講演要旨集, pages 42-43, 滋賀県彦根市, November 2005.
(P06).


next_inactive up previous contents
  目次
TODOROKI Shin-ichi 2014-06-09